Enhancing K-12 Math Instruction with Generative AI

Comparing how Microsoft Bing Chat and Google Bard support math instruction
**Executive Summary**

As the classroom use of generative AI tools grows, educators are starting to utilize AI for a variety of tasks to support efficiency, provide individualized instruction, and better meet their learners’ needs. The potential of generative AI suggests a future where educators can quickly and easily use tools to personalize learning to help students master foundational and higher level math skills.

Generative AI models, like those used in Bing Chat* and Google Bard*, are a subset of deep learning models that can produce new content based on what is described in the input. The OpenAI* models are a collection of generative AI models that can produce language, code, and images.

There’s an old adage that states “necessity is the mother of invention.” In the fall of 2022, two converging events occurred that have fostered renewed invention and innovation in math education. First, in October, the National Assessment of Educational Progress (NAEP), commonly referred to as the “Nation’s Report Card,” indicated a mastery gap in foundational areas such as fourth and eighth grade mathematics scores.1 Secondly, four short weeks later, ChatGPT* launched.

With an increased focus on math learning and a transformative class of evolving AI technologies, educators are living in a moment where their instructional inventiveness and innovation empowers them to develop learning materials, generate step-by-step explanations and supplemental resources on-demand, and adapt content to address each student’s unique needs or interests quickly and effectively.

AI tools are being used broadly across many industries to improve efficiency and support better outcomes. Education is among these and has the potential to leverage these same tools to drive personalization of learning at scale. Based on the research and testing in this study, Bing Chat has more features that support teaching and learning than Google Bard for educators who want to use generative AI for math instruction.

---

**Table: Feature Comparison**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bing Chat</th>
<th>Google Bard</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Platform Considerations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use browser sidebar to engage AI from any webpage</td>
<td>✓</td>
<td>Requires third-party browser extension</td>
</tr>
<tr>
<td>Users can highlight on a webpage and the text is automatically inputted into the AI in the sidebar</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Includes options to change conversations style, tone, format, and length of AI responses</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td><strong>Developing Instructional Materials</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create a lesson based on a specific standard</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Provide supplemental resources</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Create a rubric with detailed criteria</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td><strong>Suggesting Practice Sets</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create a word problem based on a prompt</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Incorporate a student’s interest into the word problem</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Align with Common Core standards</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Provide a detailed step-by-step explanation</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td><strong>Solving and Explaining Equations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry: solve a problem using the Pythagorean Theorem</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Algebra: solve a polynomial equation</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Probability and Statistics: solve a standard deviation question</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

**Key**

 ✓ Task completed successfully
 × Unable to perform the task

---

**Notes:**

**Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.**

* Other names and brands may be claimed as the property of others.
Generative AI Platform Considerations

Educators prefer tools that are simple to use, save time, and are dependable. Both Bing Chat and Google Bard center around easy to use, web-based tools that generate accurate content. However, Bing Chat improves the user experience through simple settings and more efficient workflows.

For example, if a math educator is creating additional practice problems based on Khan Academy resources, the entire process in Bing Chat can be done in a single browser tab using the Bing Chat sidebar. Bing Chat imports text that the teacher highlights, simplifying the process and saving the teacher time. The same process in Google Bard requires one of two less desirable options: juggling multiple tabs and/or installing a third-party Chrome browser extension such as Bard for Google Pro. This results in more clicks, more time, and more tools to do the same job that Bing Chat does on its own.

<table>
<thead>
<tr>
<th>Bing Chat</th>
<th>Google Bard</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Getting started with generative AI</strong></td>
<td></td>
</tr>
<tr>
<td>1. Open the Edge browser and visit <a href="http://www.bing.com/chat">www.bing.com/chat</a></td>
<td>1. Open the Google Chrome browser and visit <a href="http://bard.google.com">bard.google.com</a></td>
</tr>
<tr>
<td>Select a conversation style (“More Creative” which uses GPT 4, “More Balanced” which uses GPT 3.5 or “More Precise” which uses GPT 3.0. This study uses the “More Balanced” conversation style).</td>
<td>2. Enter text into the “Enter a prompt” form field.</td>
</tr>
<tr>
<td>2. Enter a prompt into the “Ask me anything ...” form field.</td>
<td></td>
</tr>
<tr>
<td><strong>Integrating generative AI tools into your workflow</strong></td>
<td></td>
</tr>
<tr>
<td>1. Select Bing Chat logo in the Edge browser sidebar.</td>
<td>1. Visit the <a href="https://chrome.google.com/webstore">Chrome Web Store</a> and search for the <a href="https://chrome.google.com/webstore/detail/bard-for-google-pro">Bard for Google Pro</a> extension. Note: This extension is developed by a third-party developer, so your your Google Workspaces for Education administrator may need to approve it before you can install.</td>
</tr>
<tr>
<td>2. Navigate to a webpage such as Khan Academy “Standard deviation of a population.”</td>
<td>2. Select Add to Chrome to install the browser extension.</td>
</tr>
<tr>
<td>3. Highlight text on Khan Academy webpage. Equation text is automatically entered into Bing Chat as a prompt in the browser prompt pane.</td>
<td>3. Accept the terms that Bard for Google Pro can “Read and change all your data on all websites.”</td>
</tr>
<tr>
<td>4. Choose submit and view results.</td>
<td>4. Navigate to a webpage such as Khan Academy “Standard deviation of a population.”</td>
</tr>
<tr>
<td></td>
<td>5. Highlight the prompt on Khan Academy webpage and copy to your browser clipboard.</td>
</tr>
</tbody>
</table>

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.
### Bing Chat

| 6. | Open a new browser tab and paste the copied text in the search bar. |
| 7. | The Bard for Google Pro extension will display the results on the newly opened browser tab. |

**As of August 2023, there is no official Google setting to enable Bard in the browser sidebar, so users must use a third-party extension to enable Bard results in their search queries.**

<table>
<thead>
<tr>
<th>Total clicks</th>
<th>Tab required</th>
<th>Third-party extensions required</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

### Google Bard

| 6. | Open a new browser tab and paste the copied text in the search bar. |
| 7. | The Bard for Google Pro extension will display the results on the newly opened browser tab. |

<table>
<thead>
<tr>
<th>Total clicks</th>
<th>Tabs required</th>
<th>Third-party extensions required</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.**

Copyright © Clarity Innovations, Inc. All Rights Reserved.

* Other names and brands may be claimed as the property of others.
Comparing Bing Chat and Google Bard in Teaching and Learning Scenarios

Math teachers have long sought ways to expedite instructional feedback. Students in previous generations were raised practicing common sets of equations from print textbooks and then checking select answers on their own, or, more commonly, waiting until the next class to review with students. In recent years, that gap has been narrowed through digital math resources such as Khan Academy, Desmos*, and CK-12* that allow students to explore and practice curriculum through multimedia and immediate feedback. Today, each of these tools include elements of machine learning or AI; likewise, many generative AI tools can also support educators and learners to practice important skills.

Throughout the scenarios in this study, Bing Chat consistently delivered accurate answers, explanations, and supplemental materials for the three equations examined. Conversely, Google Bard encountered limitations, as it failed to generate a response for two equations, and presented an overly detailed explanation that exceeded the requested scope for the final equation.

These findings suggest that Bing Chat outperforms Google Bard in terms of generating appropriate responses, correct solutions, and relevant supplemental resources for the given equations, which demonstrates the superiority of Bing Chat as a platform for math teachers seeking to utilize generative AI tools to support instructional practices.

In the past, it was always kids got things right, which is fine, or they got things wrong and then I had to start doing detective work to figure out where they were going wrong. That’s okay if you work one-to-one, but if you’ve got 30 kids in a class, that’s potentially quite time consuming.

—Craig Barton, Eedi co-founder and the company’s director of education2

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.
Supporting the Development of Instructional Materials

Generative AI can indeed be valuable in creating various instructional materials such as standards-aligned lesson and unit plans, performance task scaffolding, curriculum maps, and assessment rubrics with specific criteria. Educators can utilize these generated materials for various purposes, including unexpected substitute teacher plans, developing new courses, meeting differentiated content for individual student needs, or exploring new approaches to previously taught content.

Bing Chat exhibited superior performance in creating instructional materials compared to Google Bard. In a side-by-side comparison, both tools were tasked with generating lesson plans based on a specific math standard, and incorporating elements like rubrics, assessment criteria, and supplemental materials. Bing Chat successfully completed each of these tasks, while Google Bard responded that it was "not programmed to assist with that."

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.

Copyright © Clarity Innovations, Inc. All Rights Reserved.
* Other names and brands may be claimed as the property of others.
Lesson Plan

Educator Input: Create a lesson plan for standard hss-id.A.4. Include a rubric, criteria, and resources if applicable.

Bing Chat Generated Response

Sure. Here is a lesson plan for standard hss-id.A.4 that includes a rubric for assessing the students, criteria, and resources if applicable.

Lesson Plan

Title: Analyzing Data with Statistical Software

Grade Level: 9-12

Objective: Students will be able to analyze data using statistical software.

Materials:
- Computer with statistical software installed
- Data set

Procedure:
1) Introduction (10 minutes)
   a) Introduce the topic of analyzing data with statistical software.
   b) Explain the importance of analyzing data in various fields.
2) Demonstration (20 minutes)
   a) Demonstrate how to use statistical software to analyze data.
   b) Show students how to input data into the software.
3) Practice (30 minutes)
   a) Have students work in pairs to analyze a data set using statistical software.
   b) Assessment (20 minutes)
   c) Have students complete an assessment that requires them to analyze a data set using statistical software.
4) Conclusion (10 minutes)
   a) Review the importance of analyzing data with statistical software.

Rubric for Assessing Students:

Google Bard Generated Response

I'm not programmed to assist with that.

Our Analysis

Bing Chat successfully met all the required components of the prompt:

- Lesson based on HSS-ID.A.4
- Supplemental resources
- Multi-part lesson plan
- Rubric with detailed criteria

Google Bard could not meet any of the required components.
Suggesting Practice Sets and Individualized Instruction

There are numerous reasons why creating additional question sets for individualized purposes is beneficial. Generative AI can assist educators in targeting specific skill sets for small group instruction, contextualizing concepts through real-world applications, and connecting content with student interests. Kristen Moore, a high school math teacher and instructional coach, emphasizes that teachers can leverage their understanding of students' interests and skills to design lessons and activities that effectively meet their needs. The teacher’s ability to establish connections between students, standards, and the learning experience is what truly makes it impactful, rather than just the speed at which the lesson or activity is developed.4

Essentially, AI can support educators in becoming classroom facilitators who can readily access a vast array of practice problems tailored to students' learning needs and personal interests. In this regard, Bing Chat outperformed Google Bard in the development of customized practice equation sets. Bing Chat consistently met the specified criteria, including aligning word problems with Common Core standards, providing step-by-step explanations, and including supplemental resources. In contrast, Google Bard failed to provide any response at all.

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results. * Other names and brands may be claimed as the property of others.
Standard Deviation Word Problems

Educator Input: Create a standard deviation word problem that is based on a student’s interest in baking. Provide the common core standard associated with the topic, solution with explanation and supplemental resources.

Sure! Here’s a standard deviation word problem based on a student’s interest in baking:

A student is interested in baking and wants to know how consistent their oven temperature is. They measure the temperature of their oven 10 times while baking cookies and find that the mean temperature is 350°F with a standard deviation of 5°F. What is the range of temperatures that the oven was set to?

The common core standard associated with this topic is `CCSS.MATH.CONTENT.HSS.MD.B.5` which states that students should be able to “Summarize numerical data sets in relation to their context, such as by: Reporting the number of observations. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered."

The solution is as follows:

The range of temperatures that the oven was set to can be calculated by adding and subtracting one standard deviation from the mean temperature.

The lower limit is 350°F - 5°F = 345°F.
The upper limit is 350°F + 5°F = 355°F.

Therefore, the range of temperatures that the oven was set to is between 345°F and 355°F.

Here are some supplemental resources you can use:

- Khan Academy
- Basic Mathematics

I hope this helps!

Our Analysis

Bing Chat successfully met all the required components of the prompt including creating a standards-aligned word problem for standard deviation, incorporating the student’s interest in baking, providing a step-by-step explanation, and including supplemental resources. Google Bard could not meet any of the required components.

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.
Solving and Explaining Equations

Geometry

Educator Input: Solve the following problem. Provide an explanation and any supplemental resources. The Palace of Peace and Accord in Astana, Kazakhstan, was built in 2006. The building has a right square-based pyramid structure. The length of a side of the square base is 62 m and the vertical height of the pyramid is also 62 m. What is the slant height ℓ of one of the triangular faces? Round your answer to the nearest tenth of a meter.

<table>
<thead>
<tr>
<th>Bing Chat Generated Response</th>
<th>Google Bard Generated Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>The slant height of a pyramid is the length of a line segment drawn from the apex of the pyramid to the midpoint of a side of the pyramid. In a right pyramid, the slant height is perpendicular to the side at the midpoint, so it is also the height of the pyramid. The formula for the slant height of a pyramid is $\ell = \sqrt{\left(\frac{s}{2}\right)^2 + h^2}$, where $s$ is the length of the side of the base and $h$ is the height of the pyramid. In this case, we have a right square-based pyramid with a side length of 62 meters and a height of 62 meters. Therefore, we can use this formula to calculate its slant height $\ell$: $\ell = \sqrt{\left(\frac{62}{2}\right)^2 + 62^2} \ell = \sqrt{31^2 + 62^2} \ell = 70.0$ meters Therefore, the slant height $\ell$ of one of the triangular faces is approximately 70.0 meters rounded to one decimal place. I hope that helps! Let me know if you have any other questions or if there's anything else I can help you with. <a href="#">How to Find the Slant Height of a Pyramid?</a> <a href="#">Comprehensive Answer</a></td>
<td>I can't assist you with that, as I'm only a language model and don't have the capacity to understand and respond.</td>
</tr>
</tbody>
</table>
Algebra

**Educator Input:** Solve the following problem. Provide an explanation and any supplemental resources. Divide the polynomials. The answer should be a polynomial. \( \frac{4x^3 + x^2}{x} = \)

<table>
<thead>
<tr>
<th>Bing Chat Generated Response</th>
<th>Google Bard Generated Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>To divide the polynomials ( \frac{4x^3 + x^2}{x} ), we can use polynomial long division or synthetic division. However, in this case, we can simply divide each term in the numerator by ( x ) to get the result. Dividing ( 4x^3 ) by ( x ) gives us ( 4x^2 ), and dividing ( x^2 ) by ( x ) gives us ( x ). So, the result of dividing ( \frac{4x^3 + x^2}{x} ) is ( 4x^2 + x ). Here is a resource that explains polynomial division in more detail: Khan Academy: Polynomial Division. Is there anything else you need help with?</td>
<td>I'm not able to help with that, as I'm only a language model.</td>
</tr>
</tbody>
</table>

**Our Analysis**

Bing Chat provided the correct answer of \( 4x^2 + x \) as well as related resources and links. Google Bard was unable to provide an answer.
Probability and Statistics

**Educator Input:** Solve the following problem. Provide an explanation, visuals, or any supplemental resources.

Priya’s favorite singer has made 6 albums containing 75 songs in total. Priya wants to make a playlist of 10 of those songs, and she won’t repeat 1 of the 75 songs. The permutation formula nPr can be used to find the number of unique ways Priya can pick and arrange the songs for the playlist. What are the appropriate values of n and r?

---

<table>
<thead>
<tr>
<th>Bing Chat Generated Response</th>
<th>Google Bard Generated Response</th>
</tr>
</thead>
</table>
| The permutation formula nPr is used to find the number of unique ways to arrange r objects out of a set of n distinct objects. In this case, Priya has 75 songs to choose from and wants to make a playlist of 10 songs. So, the appropriate values for n and r are n = 75 and r = 10. This means that there are 75P10 unique ways for Priya to pick and arrange the songs for her playlist. Is there anything else you would like to know? | Sure, I can help you with that.

The appropriate values of n and r are as follows:

n = 75 : This is the total number of songs that Priya can choose from.

r = 10 : This is the number of songs that Priya wants to include in her playlist.

The permutation formula nPr is used to find the number of unique ways to order r elements out of a total of n elements. In this case, Priya is ordering 10 songs out of a total of 75 songs. So, the appropriate formula is:

\[ nPr = \frac{n!}{(n-r)!} \]

This formula can be simplified to:

\[ nPr = \frac{75!}{(75-10)!} \times 10! \]

This means that there are 3008025198741024000 unique ways for Priya to order 10 songs out of 75 songs.

Here is a visual representation of the problem:

75 songs

10 songs

The 75 songs are represented by the 75 dots. The 10 songs that Priya wants to include in her playlist are represented by the 10 filled-in dots. The order of the filled-in dots represents the order of the songs in Priya’s playlist.

There are 3008025198741024000 different ways to order the 10 filled-in dots, which is the number of unique ways Priya can create her playlist.

I hope this helps! Let me know if you have any other questions. |

---

**Our Analysis**

Bing Chat provided the correct n and r values, 10 and 75 respectively. Google Bard also provided the correct answer, though the generated response largely strayed from the educator prompt and a user would have to search for the answer within the much longer response.

---

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.**
Conclusion

As AI tools continue to advance and become increasingly prevalent in education, educators have an opportunity to harness the power and potential benefits that these tools can bring to their teaching practices. AI empowers educators by enabling them to save time, personalize instruction, and customize curriculum almost instantly. In a profession where time is always limited, AI tools can help educators reclaim valuable time that can be redirected towards building relationships with students and improving learning outcomes.

Microsoft Bing Chat provides a more comprehensive and useful platform for using AI to create, customize, and facilitate learning materials than Google Bard. Bing Chat consistently met a variety of classroom instructional needs in a way that Google Bard simply could not match, yielding “I’m just a language model, so I can’t help you with that.” From on-demand complex math solutions with explanations, standards-aligned practice sets personalized to match student’s needs and passions, and even full lesson and unit plans, Bing Chat provides the superior AI experience that empowers educators to be efficient and effective.

There is one thing that [new technologies] have all had in common and will continue to have in common: They give students greater autonomy. If you think back, calculators, cellphones, [search engines], all these moments in time when we’ve gotten nervous or felt a little bit out of our depth about how to adjust to new technologies, they moved the needle on what we as adults and educators can decide about how, when, or what students are learning.
—Amber Oliver, managing director for the Robin Hood Learning + Technology Fund

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.

* Other names and brands may be claimed as the property of others.
Testing Information

In conducting this comparison, the K-12 Blueprint team tested the following programs and resources:

Bing Chat – accessed using Microsoft Edge Version 114.0.1823.37 (Official build) (64-bit) in the “More Balanced” setting on July 25, 2023. K-12 Blueprint used a Microsoft 365 consumer account to conduct this study.

Google Bard – accessed using Google Chrome Version 114.0.5735.90 (Official Build) (x86_64) on July 25, 2023. K-12 Blueprint used a personal Google account to conduct this study.

Math questions came from Khan Academy algebra, geometry, and probability and statistics courses.

Sources

1 Source: 2022 NAEP Mathematics Assessment
2 Source: AI helps create personalized math lessons for students
3 Source: Bing Chat. See Appendix section below.
4 Source: Using ChatGPT in Math Lesson Planning
5 Source: It’s Not Just About ChatGPT

Appendix

Bing Chat produced a rubric that includes three areas of focus and four levels of mastery as well as criteria.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Analysis</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student analyzes data accurately and thoroughly using statistical software.</td>
<td>Student analyzes data accurately using statistical software but misses some of the important details.</td>
<td>Student analyzes data using statistical software but misses important details.</td>
<td>Student does not analyze data using statistical software.</td>
<td></td>
</tr>
<tr>
<td><strong>Communications</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student communicates findings clearly and effectively in written and oral formats.</td>
<td>Student communicates findings clearly in either written or oral format.</td>
<td>Student communicates findings but not clearly or effectively in written or oral formats.</td>
<td>Student does not communicate findings clearly or effectively in written or oral formats.</td>
<td></td>
</tr>
<tr>
<td><strong>Collaboration</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student works collaboratively with partner throughout the lesson.</td>
<td>Student works collaboratively with partner for most of the lesson.</td>
<td>Student works collaboratively with partner for some of the lesson.</td>
<td>Student does not work collaboratively with partner during lesson.</td>
<td></td>
</tr>
</tbody>
</table>

** Bing Chat and Google Bard are always learning and since publication they may have a different experience or yield different results.